Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add filters

Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.26.542489

ABSTRACT

With the rapid spread and evolution of SARS-CoV-2, the ability to monitor its transmission and distinguish among viral lineages is critical for pandemic response efforts. The most commonly used software for the lineage assignment of newly isolated SARS-CoV-2 genomes is pangolin, which offers two methods of assignment, pangoLEARN and pUShER. PangoLEARN rapidly assigns lineages using a machine learning algorithm, while pUShER performs a phylogenetic placement to identify the lineage corresponding to a newly sequenced genome. In a preliminary study, we observed that pangoLEARN (decision tree model), while substantially faster than pUShER, offered less consistency across different versions of pangolin v3. Here, we expand upon this analysis to include v3 and v4 of pangolin, which moved the default algorithm for lineage assignment from pangoLEARN in v3 to pUShER in v4, and perform a thorough analysis confirming that pUShER is not only more stable across versions but also more accurate. Our findings suggest that future lineage assignment algorithms for various pathogens should consider the value of phylogenetic placement.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.03.527052

ABSTRACT

Pathogen nomenclature systems are a key component of effective communication and collaboration for researchers and public health workers. Since February 2021, the Pango nomenclature for SARS-CoV-2 has been sustained by crowdsourced lineage proposals as new isolates were added to a growing global dataset. This approach to dynamic lineage designation is dependent on a large and active epidemiological community identifying and curating each new lineage. This is vulnerable to time-critical delays as well as regional and personal bias. To address these issues, we developed a simple heuristic approach that divides a phylogenetic tree into lineages based on shared ancestral genotypes. We additionally provide a framework that automatically prioritizes the lineages by growth rate and association with key mutations or locations, extensible to any pathogen. Our implementation is efficient on extremely large phylogenetic trees and produces similar results to existing Pango lineage designations when applied to SARS-CoV-2. This method offers a simple, automated and consistent approach to pathogen nomenclature that can assist researchers in developing and maintaining phylogeny-based classifications in the face of ever increasing genomic datasets.

3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.27.509649

ABSTRACT

Exposure to different mutagens leaves distinct mutational patterns that can allow prediction of pathogen replication niches (Ruis 2022). We therefore hypothesised that analysis of SARS-CoV-2 mutational spectra might show lineage-specific differences, dependant on the dominant site(s) of replication and onwards transmission, and could therefore rapidly infer virulence of emergent variants of concern (VOC; Konings 2021). Through mutational spectrum analysis, we found a significant reduction in G>T mutations in Omicron, which replicates in the upper respiratory tract (URT), compared to other lineages, which replicate in both upper and lower respiratory tracts (LRT). Mutational analysis of other viruses and bacteria indicates a robust, generalisable association of high G>T mutations with replication within the LRT. Monitoring G>T mutation rates over time, we found early separation of Omicron from Beta, Gamma and Delta, while the mutational burden in Alpha varied consistent with changes in transmission source as social restrictions were lifted. This supports the use of mutational spectra to infer niches of established and emergent pathogens.

4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.12.475688

ABSTRACT

Phylogenetic tree optimization is necessary for precise analysis of evolutionary and transmission dynamics, but existing tools are inadequate for handling the scale and pace of data produced during the COVID-19 pandemic. One transformative approach, online phylogenetics, aims to incrementally add samples to an ever-growing phylogeny, but there are no previously-existing approaches that can efficiently optimize this vast phylogeny under the time constraints of the pandemic. Here, we present matOptimize, a fast and memory-efficient phylogenetic tree optimization tool based on parsimony that can be parallelized across multiple CPU threads and nodes, and provides orders of magnitude improvement in runtime and peak memory usage compared to existing state-of-the-art methods. We have developed this method particularly to address the pressing need during the COVID-19 pandemic for daily maintenance and optimization of a comprehensive SARS-CoV-2 phylogeny. Thus, our approach addresses an important need for daily maintenance and refinement of a comprehensive SARS-CoV-2 phylogeny.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.03.470766

ABSTRACT

1.Phylogenetics has been central to the genomic surveillance, epidemiology and contact tracing efforts during the COVD-19 pandemic. But the massive scale of genomic sequencing has rendered the pre-pandemic tools inadequate for comprehensive phylogenetic analyses. Here, we discuss the phylogenetic package that we developed to address the needs imposed by this pandemic. The package incorporates several pandemic-specific optimization and parallelization techniques and comprises four programs: UShER, matOptimize, RIPPLES and matUtils. Using high-performance computing, UShER and matOptimize maintain and refine daily a massive mutation-annotated phylogenetic tree consisting of all SARS-CoV-2 sequences available in online repositories. With UShER and RIPPLES, individual labs - even with modest compute resources - incorporate newly-sequenced SARS-CoV-2 genomes on this phylogeny and discover evidence for recombination in real-time. With matUtils, they rapidly query and visualize massive SARS-CoV-2 phylogenies. These tools have empowered scientists worldwide to study the SARS-CoV-2 evolution and transmission at an unprecedented scale, resolution and speed.

6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.02.471004

ABSTRACT

Phylogenetics has been foundational to SARS-CoV-2 research and public health policy, assisting in genomic surveillance, contact tracing, and assessing emergence and spread of new variants. However, phylogenetic analyses of SARS-CoV-2 have often relied on tools designed for de novo phylogenetic inference, in which all data are collected before any analysis is performed and the phylogeny is inferred once from scratch. SARS-CoV-2 datasets do not fit this mould. There are currently over 5 million sequenced SARS-CoV-2 genomes in public databases, with tens of thousands of new genomes added every day. Continuous data collection, combined with the public health relevance of SARS-CoV-2, invites an "online" approach to phylogenetics, in which new samples are added to existing phylogenetic trees every day. The extremely dense sampling of SARS-CoV-2 genomes also invites a comparison between Likelihood and Parsimony approaches to phylogenetic inference. Maximum Likelihood (ML) methods are more accurate when there are multiple changes at a single site on a single branch, but this accuracy comes at a large computational cost, and the dense sampling of SARS-CoV-2 genomes means that these instances will be extremely rare. Therefore, it may be that approaches based on Maximum Parsimony (MP) are sufficiently accurate for reconstructing phylogenies of SARS-CoV-2, and their simplicity means that they can be applied to much larger datasets. Here, we evaluate the performance of de novo and online phylogenetic approaches, and ML and MP frameworks, for inferring large and dense SARS-CoV-2 phylogenies. Overall, we find that online phylogenetics produces similar phylogenetic trees to de novo analyses for SARS-CoV-2, and that MP optimizations produce more accurate SARS-CoV-2 phylogenies than do ML optimizations. Since MP is thousands of times faster than presently available implementations of ML and online phylogenetics is faster than de novo, we therefore propose that, in the context of comprehensive genomic epidemiology of SARS-CoV-2, MP online phylogenetics approaches should be favored.

7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.04.455157

ABSTRACT

Accurate and timely detection of recombinant lineages is crucial for interpreting genetic variation, reconstructing epidemic spread, identifying selection and variants of interest, and accurately performing phylogenetic analyses. During the SARS-CoV-2 pandemic, genomic data generation has exceeded the capacities of existing analysis platforms, thereby crippling real-time analysis of viral recombination. Low SARS-CoV-2 mutation rates make detecting recombination difficult. Here, we develop and apply a novel phylogenomic method to exhaustively search a nearly comprehensive SARS-CoV-2 phylogeny for recombinant lineages. We investigate a 1.6M sample tree, and identify 606 recombination events. Approximately 2.7% of sequenced SARS-CoV-2 genomes have recombinant ancestry. Recombination breakpoints occur disproportionately in the Spike protein region. Our method empowers comprehensive real time tracking of viral recombination during the SARS-CoV-2 pandemic and beyond.


Subject(s)
Severe Acute Respiratory Syndrome
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.05.438352

ABSTRACT

We report a SARS-CoV-2 lineage that shares N501Y, P681H, and other mutations with known variants of concern, such as B.1.1.7. This lineage, which we refer to as B.1.x (COG-UK sometimes references similar samples as B.1.324.1), is present in at least 20 states across the USA and in at least six countries. However, a large deletion causes the sequence to be automatically rejected from repositories, suggesting that the frequency of this new lineage is underestimated using public data. Recent dynamics based on 339 samples obtained in Santa Cruz County, CA, USA suggest that B.1.x may be increasing in frequency at a rate similar to that of B.1.1.7 in Southern California. At present the functional differences between this variant B.1.x and other circulating SARS-CoV-2 variants are unknown, and further studies on secondary attack rates, viral loads, immune evasion and/or disease severity are needed to determine if it poses a public health concern. Nonetheless, given what is known from well-studied circulating variants of concern, it seems unlikely that the lineage could pose larger concerns for human health than many already globally distributed lineages. Our work highlights a need for rapid turnaround time from sequence generation to submission and improved sequence quality control that removes submission bias. We identify promising paths toward this goal.

9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.26.314971

ABSTRACT

As the SARS-CoV-2 virus spreads through human populations, the unprecedented accumulation of viral genome sequences is ushering a new era of "genomic contact tracing" - that is, using viral genome sequences to trace local transmission dynamics. However, because the viral phylogeny is already so large - and will undoubtedly grow many fold - placing new sequences onto the tree has emerged as a barrier to real-time genomic contact tracing. Here, we resolve this challenge by building an efficient, tree-based data structure encoding the inferred evolutionary history of the virus. We demonstrate that our approach improves the speed of phylogenetic placement of new samples and data visualization by orders of magnitude, making it possible to complete the placements under real-time constraints. Our method also provides the key ingredient for maintaining a fully-updated reference phylogeny. We make these tools available to the research community through the UCSC SARS-CoV-2 Genome Browser to enable rapid cross-referencing of information in new virus sequences with an ever-expanding array of molecular and structural biology data. The methods described here will empower research and genomic contact tracing for laboratories worldwide. Software AvailabilityUSHER is available to users through the UCSC Genome Browser at https://genome.ucsc.edu/cgi-bin/hgPhyloPlace. The source code and detailed instructions on how to compile and run UShER are available from https://github.com/yatisht/usher.

10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.04.075945

ABSTRACT

BackgroundResearchers are generating molecular data pertaining to the SARS-CoV-2 RNA genome and its proteins at an unprecedented rate during the COVID-19 pandemic. As a result, there is a critical need for rapid and continuously updated access to the latest molecular data in a format in which all data can be quickly cross-referenced and compared. We adapted our genome browser visualization tool to the viral genome for this purpose. Molecular data, curated from published studies or from database submissions, are mapped to the viral genome and grouped together into "annotation tracks" where they can be visualized along the linear map of the viral genome sequence and programmatically downloaded in standard format for analysis. ResultsThe UCSC Genome Browser for SARS-CoV-2 (https://genome.ucsc.edu/covid19.html) provides continuously updated access to the mutations in the many thousands of SARS-CoV-2 genomes deposited in GISAID and the international nucleotide sequencing databases, displayed alongside phylogenetic trees. These data are augmented with alignments of bat, pangolin, and other animal and human coronavirus genomes, including per-base evolutionary rate analysis. All available annotations are cross-referenced on the virus genome, including those from major databases (PDB, RFAM, IEDB, UniProt) as well as up-to-date individual results from preprints. Annotated data include predicted and validated immune epitopes, promising antibodies, RT-PCR and sequencing primers, CRISPR guides (from research, diagnostics, vaccines, and therapies), and points of interaction between human and viral genes. As a community resource, any user can add manual annotations which are quality checked and shared publicly on the browser the next day. ConclusionsWe invite all investigators to contribute additional data and annotations to this resource to accelerate research and development activities globally. Contact us at genome-www@soe.ucsc.edu with data suggestions or requests for support for adding data. Rapid sharing of data will accelerate SARS-CoV-2 research, especially when researchers take time to integrate their data with those from other labs on a widely-used community browser platform with standardized machine-readable data formats, such as the SARS-CoV-2 Genome Browser.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL